PMT

GCE Examinations Advanced Subsidiary / Advanced Level

Decision Mathematics Module D2

Paper D MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.

Accuracy marks (A) can only be awarded when a correct method has been used.

(B) marks are independent of method marks.

Written by Craig Hunter, Edited by Shaun Armstrong © Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

D2 Paper D – Marking Guide

2.

(a)									
	order:	1	5	4	3	2	-		
		Α	В	С	D	E			
	A	_	4	7	8	2			
	В	4	-	1	5	6	_		
	С	7	1	-	2	7	_		
	D	8	5	2	-	3	_	M1	
	Ε	2	6	7	3	-			
	A	E —	3 — D	2	- C —	1 B	,	A1	
	upper bou = 2		\times weight $3 + 2 + 2$			l 6 mile	s	M1 A1	
(b)	use AB s	aving 2	2 + 3 + 2	2 + 1 -	- 4 = 4			M1	
	new uppe	er bound	l = 16 -	-4 = 12	2 miles	5		A1	(6)
(a)	adding 5	to all er	ntries to	make	them p	ositive	e gives	M1	
				j	В				
			Ι]	II	III			
		Ι	11		1	4			
	Α	II	3	1	.0	8			
		III	10		6	2			
	new value	e of gan	ne $v = 1$	<i>V</i> + 5				A1	
(b)	let <i>B</i> play	strateg	ies I, II	and II	I with j	propor	tions p_1 , p_2 and p_3	M1	
	let $x_1 = \frac{p}{v}$	$\frac{x_1}{x_2}$, $x_2 =$	$\frac{p_2}{v}, x_3$	$=\frac{p_3}{v}$				A1	
(c)	$p_1 + p_2 + dividing l$		tes x_1 -	$+ x_2 + .$	$x_3 = \frac{1}{v}$			M1	
	we wish t	o minin	nise v :	. maxi	mise $\frac{1}{v}$	-			
	objective	functio	n is ma	aximise	e P = x	$_{1} + x_{2} +$	$-x_3$	A1	

(d) from A I, $11p_1 + p_2 + 4p_3 \le v$ from A II, $3p_1 + 10p_2 + 8p_3 \le v$ from A III, $10p_1 + 6p_2 + 2p_3 \le v$ M1

dividing by *v* gives the constraints

$$11x_1 + x_2 + 4x_3 \le 1$$

$$3x_1 + 10x_2 + 8x_3 \le 1$$

$$10x_1 + 6x_2 + 2x_3 \le 1$$

also $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$
A1 (8)

 $\mathsf{D2}_\mathsf{D}$ MARKS page 2

3.	<i>(a)</i>
----	------------

order:	1	6	2	3	5	4	7
	Α	В	С	D	Ε	F	G
Α	-	83	57	68	103	91	120
В	83	-	78	63	41	82	52
С	57	78	_	37	59	63	74
D	68	63	37	_	60	52	62
Ε	103	41	59	60	_	48	51
F	91	82	63	52	48	_	77
G	120	52	74	62	51	77	-

M1 A1

A1 A1

tour: ACDFEBGA	
upper bound = $57 + 37 + 52 + 48 + 41 + 52 + 120 = 407$ miles	

e.g. starting at B (b)

A	A _	B	С	D	F	Г	1
Α	_	0.0		2	E	F	G
		83	57	68	103	91	120
В	83	Ι	78	63	41	82	52
С	57	78	_	37	59	63	74
D	68	63	37	-	60	52	62
E	103	41	59	60	-	48	51
F	91	82	63	52	48	_	77
G	120	52	74	62	51	77	_

M1 A1

lower bound = weight of MST + two edges of least weight from A= (41 + 48 + 51 + 52 + 37) + 57 + 68 = 354 miles

	= (41 + 48 + 51 + 52 + 37) + 57 + 68 = 354 miles	C	M1 A1	
(c)	$354 \le d \le 407$		B1	(9)

PMT

Stage	State	Action	Destination	Value	
1	Ι	IL	L	5*	
	J	JL	L	6*	A1
	K	KL	L	10*	
2	F	FI	Ι	$\min(5, 5) = 5^*$	
		FJ	J	$\min(2, 6) = 2$	
		FK	K	$\min(2, 10) = 2$	
	G	GI	Ι	$\min(8, 5) = 5$	
		GJ	J	$\min(9, 6) = 6^*$	
		GK	K	$\min(3, 10) = 3$	
	Н	HI	Ι	$\min(10, 5) = 5$	
		HJ	J	$\min(2, 6) = 2$	M1 A2
		HK	K	$\min(9, 10) = 9^*$	
3	В	BF	F	$\min(8, 5) = 5$	
		BG	G	$\min(11, 6) = 6^*$	
		BH	Н	$\min(4, 9) = 4$	
	С	CF	F	$\min(5, 5) = 5$	
		CH	Н	$\min(10.5, 9) = 9^*$	
	D	DF	F	$\min(9, 5) = 5$	
		DH	Н	$\min(6, 9) = 6^*$	
	Ε	EF	F	$\min(12, 5) = 5$	
		EG	G	$\min(7, 6) = 6$	M1 A1
		EH	Н	$\min(15, 9) = 9^*$	
4	Α	AB	В	$\min(1, 6) = 1$	
		AC	С	$\min(4.5, 9) = 4.5$	
		AD	D	$\min(13, 6) = 6$	A1
		AE	Ε	$\min(10, 9) = 9^*$	
ng route A					M1 A1
test stage	is 9 miles				A1 (10

5.	need to add d	ummy column	giving
----	---------------	-------------	--------

need to add dummy column giving	M1
19 69 168 0 22 64 157 0 20 72 166 0 23 66 171 0	
col min. 19 64 157 0	
reducing rows will make no difference	B1
reducing columns gives:	
$\begin{array}{c c} 0 & 5 & 11 \\ \hline 3 & 0 & 0 \\ \hline \end{array}$	
$\begin{array}{ccccc} 0 & 5 & 11 & 0 \\ \hline 3 & 0 & 0 & 0 \\ 1 & 8 & 9 & 0 \\ 4 & 2 & 14 & 0 \\ \end{array}$ (N.B. a different choice of lines will lead to the same final assignment)	M1 A1
3 lines required to cover all zeros, apply algorithm	B1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1 A1
3 lines required to cover all zeros, apply algorithm	
	A1
4 lines required to cover all zeros so allocation is possible	B1
stage 1 is run by Alex stage 2 is run by Suraj stage 3 is run by Darren Leroy does not take part	M1 A1 (11)

PMT

6. (*a*)

(b)

(c)

Image: Process of the second systemImage: Process of the second systemrow minimum X X_1 -2 4 -2 X_2 6 -1 -1 column maximum64	M1 A1
X X_2 K_2	M1 41
X_2 6 -1 -1	M1 A1
column maximum 6 4	
	MI AI
$\max (\text{row min}) = -1 \qquad \min (\text{col max}) = 4$ $\max (\text{row min}) \neq \min (\text{col max}) \therefore \text{ no saddle point}$	B1
(i) let X play strategies X_1 and X_2 with proportions p and expected payoff to X against each of Y's strategies:	l(1-p)
$Y_1 = \frac{-2p + 6(1 - p)}{4p - (1 - p)} = \frac{6 - 8p}{5p - 1}$	M1 A1
for optimal strategy $6 - 8p = 5p - 1$ $\therefore 13p = 7, p = \frac{7}{13}$	
\therefore X should play $X_1 \frac{7}{13}$ of time and $X_2 \frac{6}{13}$ of time	M1 A1
(ii) let <i>Y</i> play strategies Y_1 and Y_2 with proportions <i>q</i> and expected loss to <i>Y</i> against each of <i>X</i> 's strategies:	(1 - q)
$X_1 \qquad {}^{-}2q + 4(1-q) = 4 - 6q X_2 \qquad 6q - (1-q) = 7q - 1$	M1 A1
for optimal strategy $4 - 6q = 7q - 1$ $\therefore 13q = 5, q = \frac{5}{13}$	
\therefore <i>Y</i> should play $Y_1 \frac{5}{13}$ of time and $Y_2 \frac{8}{13}$ of time	M1 A1

7. (*a*)

	D	Ε	F	Available
Α	20			20
В	10	5		15
С			25	25
Required	30	5	25	

M1 A1

no. of rows + no. of cols - 1 = 3 + 3 - 1 = 5in this solution only 4 cells are occupied, less than 5 \therefore degenerate

(b) placing 0 in (3, 2) as it has lowest cost of unoccupied cells

taking $R_1 = 0$, $R_1 + K_1 = 13$ \therefore $K_1 = 13$ $R_2 + K_1 = 10$ \therefore $R_2 = ^3$ $R_2 + K_2 = 9$ \therefore $K_2 = 12$ $R_3 + K_2 = 6$ \therefore $R_3 = ^6$ M1 A2 $R_3 + K_3 = 8$ \therefore $K_3 = 14$

	$K_1 = 13$	$K_2 = 12$	$K_3 = 14$
$R_1 = 0$	\bigcirc	(11	14
$R_2 = -3$	\bigcirc	\bigcirc	12
$R_3 = -6$	(15	\bigcirc	\bigcirc

improvement indices, $I_{ij} = C_{ij} - R_i - K_j$

$$\therefore I_{12} = 11 - 0 - 12 = ^{-1} I_{13} = 14 - 0 - 14 = 0 I_{23} = 12 - (^{-3}) - 14 = 1 I_{31} = 15 - (^{-6}) - 13 = 8$$
M1 A1

pattern not optimal as there is a negative improvement index

applying algorithm

let $\theta = 5$, giving

	D	Ε	F]		D	Ε	F	
Α	$20 - \theta$	θ			Α	15	5		
В	$10 + \theta$	$5 - \theta$			В	15			
С			25		С			25	M1 A1

this solution is also degenerate

place 0 in (3, 2) again

taking $R_1 = 0$, $R_1 + K_1 = 13$ \therefore $K_1 = 13$ $R_1 + K_2 = 11$ \therefore $K_2 = 11$ $R_2 + K_1 = 10$ \therefore $R_2 = -3$ $R_3 + K_2 = 6$ \therefore $R_3 = -5$ M1 A1 $R_3 + K_3 = 8$ \therefore $K_3 = 13$

	$K_1 = 13$	$K_2 = 11$	$K_3 = 13$
$R_1 = 0$	\bigcirc	\bigcirc	(14
$R_2 = -3$	\bigcirc	9	(12
$R_3 = -5$	(15	\bigcirc	\bigcirc

 $\therefore I_{13} = 14 - 0 - 13 = 1$ $I_{22} = 9 - (-3) - 11 = 1$ $I_{23} = 12 - (-3) - 13 = 2$ $I_{31} = 15 - (-5) - 13 = 7$ M1 A1

all improvement indices are non-negative : pattern is optimal

15 units from A to D, 5 units from A to E,

15 units from *B* to *D*, 25 units from *C* to *F*

total cost = $(15 \times 13) + (5 \times 11) + (15 \times 10) + (25 \times 8) = \text{\pounds}600$ A1

Total (75)

B1

A1

(18)

B1

B1

Question no.	1	2	3	4	5	6	7	Total
Topic(s)	TSP, shortcuts	game, formulate lin. prog.	TSP, nearest neighbour	dynamic prog., maximin	allocation, dummy	game	transport., n-w corner, stepping- stone, degeneracy	
Marks	6	8	9	10	11	13	18	75
Student								